Принцип работы потенциометрического датчика

Содержание

Принцип работы потенциометра

Принцип работы потенциометрического датчика

Потенциометр (от лат. potentia — сила и …метр), 1) электроизмерительный компенсатор, прибор для определения эдс или напряжений компенсационным методом измерений. С использованием мер сопротивления потенциометр может применяться для измерения тока, мощности и др. электрических величин, а с использованием соответствующих измерительных преобразователей — для измерения различных неэлектрических величин (например, температуры, давления, состава газов). Различают потенциометры постоянного и переменного тока.

  В потенциометрах постоянного тока измеряемое напряжение сравнивается с эдс нормального элемента. Поскольку в момент компенсации ток в цепи измеряемого напряжения равен нулю, измерения производятся без отбора мощности от объекта измерения. Точность измерений при помощи таких потенциометрыах достигает 0,01%, а иногда и выше. Потенциометры постоянного тока делятся на высокоомные  и низкоомные. Первые имеют пределы измерений до 2 в и применяются для поверки приборов высокого класса точности, вторые применяются для измерения напряжений до 100 мв.

Потенциометры. Устройство. Принцип действия

Для измерения более высоких напряжений (обычно до 600 в) и поверки вольтметров потенциометры соединяют с делителем напряжения; при этом компенсируется падение напряжения на одном из сопротивлений делителя, составляющее известную часть измеряемого напряжения.

  В потенциометрах переменного тока измеряемое напряжение сравнивается с падением напряжения, создаваемым переменным током той же частоты на известном сопротивлении; при этом измеряемое напряжение компенсируется по амплитуде и фазе. Точность измерений потенциометров переменного тока порядка 0,2 %.

  В электронных автоматических потенциометрах как постоянного, так и переменного тока измерения напряжения выполняются автоматически; при этом компенсация измеряемого напряжения осуществляется посредством исполнительного механизма (электродвигателя), перемещающего соответствующие движки на сопротивлениях (реохордах) потенциометра. Исполнительный механизм управляется напряжением небаланса (разбаланса) — разностью между компенсируемым и компенсирующим напряжениями.

Результаты измерений в электронных автоматических потенциометрах отсчитываются по стрелочному указателю, фиксируются на диаграммной ленте или выдаются в цифровой форме, что позволяет вводить полученные данные непосредственно в ЭВМ. Помимо измерений, электронные автоматические потенциометры могут выполнять функции регулирования параметров производственных процессов.

В этом случае движок реохорда устанавливают в определённое положение, задающее, например, требуемую температуру объекта регулирования, а напряжение небаланса потенциометры подают на исполнительный механизм, соответственно увеличивающий (уменьшающий) электрический нагрев или регулирующий поступление горючего.

  2) Делитель напряжения с плавным регулированием сопротивления, устройство (в простейшем случае в виде проводника с большим омическим сопротивлением, снабженного скользящим контактом), при помощи которого на вход электрической цепи может быть подана часть данного напряжения. Такие делители-потенциометры применяются в радиотехнике и электротехнике, в аналоговой вычислительной и в измерительной технике, а также в системах автоматики, например в качестве датчиков линейных и угловых перемещений.

Процесса

Глава 9. Датчики параметров технологического

В технологических процессах управление осуществляется по таким параметрам как время, энергия, температура, сила (давление), масса, скорость (ускорение), электропроводность, освещенность, цвет и т.д. Многие остальные параметры технологических процессов бывают рассчитаны, смоделированы из вышеперечисленных.

Датчик — конструктивно законченное устройство, предназначенное для преобразования физической величины в электрическую или иную величину, удобную для дальнейшей передачи и преобразования.

Большинство известных в автоматике дат­чиков преобразуют контролируемую ве­личину X в электрическую величину Y (к примеру, движение в индуктивность или напряжение, температуру в электрическое напряжение и т. п.) или в неэлектрическую (движение в давление воздуха или жидкости и др.).

Измерения производят путем внедрения датчика 6 в среду 1 или приема излучений (электромагнитных, акустических и др.) из нее (рис. 9.1).

Основу датчика составляет чувствительный элемент 2, непосредственно преобразующий измеряемую величину среды 1 в электрический сигнал.

2. Принцип действия потенциометров

В состав датчика могут входить также устройства 3, изменяющие форму или корректирующие сигнал чувствительного элемента͵ к примеру, преобразователь аналогового сигнала в цифровой или корректор нелинœейности. Сигнал из датчика подают по проводам или по беспроводной системе 4 на приемник 5 его обработки и дальнейшего использования.

Рисунок 9.1 – Система: датчик и измеряемая среда.

Датчики классифицируют по различным признакам, но, прежде всœего по виду измеряемого параметра среды и принципу действия. При заказе датчика у изготовителя оперируют, прежде всœего, видом измеряемого параметра: температура, давление, скорость, плотность и т.д.

По роду энергии выходной величины различают электрические и неэлектрические датчики, в частности механические, пневматические или гидравлические.

В практике находят разные виды датчиков, но всœе большее и большее применение находят электрические и построенные на их базе электронные датчики, в силу своей универсальности применения независимо от оборудования, на ĸᴏᴛᴏᴩᴏᴇ они устанавливаются, и технологичности изготовления.

Принцип действия датчика оказывает существенное влияние на его выбор, в случае если имеются требования по габаритным размерам, погрешности или безопасности работы автоматической системы.

В современных системах автоматики датчики подразделяют также по виду выходной величины — аналоговая или цифровая. Традиционно использовалось аналоговое представление информации. При этом, в связи с повышением требований к точности передачи информации датчиков на большое расстояние (от оборудования до места обработки информации), применением компьютерного ее анализа и после-дующего использования, цифровые датчики находят всœе большее и большее применение.

Понятие датчика связано с такими характеристиками как диапазон измерений, статическая характеристика, точность измерений, чувствительность, разрешающая способность, время успокоения и быстродействие, выходная мощность и выходное сопротивление.

Диапазон измерении – разница между минимальной измеряемой величиной и максимальной.

Статическая характеристика – зависимость выходной величины Y от входной величины X – Y=f(X) (рис.9.2).

Чувствительность – отношение изменения показаний датчика dY к изменению измеряемой величины dX:

= dY/dX.

Одной из характеристик датчиков является нелинœейность его статической характеристики. Для датчиков с линœейной статической характеристикой (рис.9.2, зависимость 1) чувствительность постоянна. Для датчиков с нелинœейной характеристикой (рис.9.2, зависимость 2) чувствительность непостоянна, что вызывает определœенные трудности использования датчика исходя из диапазона измеряемой величины. По этой причине применяют различные способы линœеализации выходного сигнала датчиков. Линœейная зависимость Y=f(X) упрощает использование и обработку сигналов, снижает погрешности.

Точность измерений. Точность измерений определяется погрешностью. Различают абсолютную погрешность— разность между показанием датчика Xд и истинным значением измеряемой величины Xо:

X = Xд — Xо

и относительную погрешность – отношение абсолютной погрешности к истинному значению измеряемой величины

= X/Xо.

Рисунок 9.2 – Нелинœейность датчиков.

Приведенная погрешность— отношение абсолютной погрешности к нормированному значению, к примеру, к максимальному значению измеряемой величины Xм

= X/Xм.

Основная погрешность – погрешность в нормальных условиях эксплуатации (температура, влажность, атмосферное давление и т.п.).

Дополнительная погрешность – погрешность, вызванная отклонением условий измерений (эксплуатации) от нормальных, на которые рассчитан датчик по техническому паспорту.

Разрешающая способность – минимальная разность измеряемой величины, различаемая с помощью датчика.

Время установления показаний (время успокоения) – время, в течение которого при одной и той же входной измеряемой величинœе показания датчика примут постоянное значение.

Быстродействие – максимальное количество измерений с нормированной погрешностью в единицу времени измерения.

Выходная мощность сигнала и выходное сопротивление датчика должны соответствовать приемнику информации.

Источник: https://astbusines.ru/princip-raboty-potenciometra/

Потенциометрический датчик: описание, устройство и схема :

Принцип работы потенциометрического датчика

В технике широко применяются приборы для измерения величин перемещений объектов с их преобразованием в электрические сигналы. Потенциометрический датчик в большинстве конструкций представляет собой реостат и соединенный с объектом скользящий контакт, с которого снимается сигнал. Выходной параметр — это величина электрического сопротивления, зависящего от углового или линейного перемещения подвижного элемента.

Принцип действия

Потенциометр преобразует линейные или угловые перемещения в соответствующие величины напряжения, тока или сопротивления. За счет этого можно работать со многими неэлектрическими величинами: давлением, уровнем, расходом и др.

Читайте также  Инфракрасный датчик движения принцип работы

Потенциометрические датчики, принцип действия которых заключается в измерении перемещения или места расположения положения, соединяются своими подвижными контактами переменного резистора с объектами. Это могут быть клапаны, антенны, режущие инструменты и многое другое. После подачи питания на датчик с него снимается сигнал положения движка потенциометра, как с делителя напряжения.

Базовый метод регистрации во всех моделях остается одним и тем же, но имеются конструктивные отличия. Сигнал может сниматься напрямую или с помощью электронной схемы после его обработки и нормализации. Важно, чтобы он соответствовал определенным стандартам.

Достоинства потенциометрических датчиков

  • Простота конструкции.
  • Небольшая стоимость.
  • Хорошая разрешающая способность.
  • Компактность и малый вес.
  • Стабильность показаний.

Конструктивное исполнение

В промышленности распространены проволочные потенциометрические датчики перемещения. Они обладают высокой точностью и стабильностью, имеют малые величины температурного и переходного сопротивлений и низкий уровень шумов. К недостаткам относятся: небольшая величина сопротивления, малая разрешающая способность, износ подвижных частей и ограниченность применения при работе на переменном токе.

Устройства состоят из трех основных элементов:

  1. Каркас. Изготовлен из теплопроводного изоляционного материала или металла с диэлектрическим покрытием, не меняющий геометрические размеры при нагревании. Форма может быть в виде кольца, изогнутой пластины, стержня.
  2. Изолированная обмотка. Выполняется с точной укладкой провода, от шага которой зависит разрешающая способность прибора.
  3. Подвижная щетка. В местах ее соприкосновения с обмоткой витки очищены от изоляции. Подвижный контакт в устройствах может перемещаться поступательно или вращательно. В последнем случае устройства могут быть одно- или многооборотного исполнения.

Материалы

Каркас изготавливается из диэлектрического материала: керамики, гетинакса, текстолита, пластмассы. Применяется металл с изоляционным покрытием. Его высокая теплопроводность дает возможность хорошо отводить тепло от провода датчика.

Металл обмотки обладает высоким удельным электрическим сопротивлением, стойкостью к коррозии, небольшим влиянием температуры, прочностью на истирание и разрыв. Этим требованиям соответствует манганин, константан, никельхромовые сплавы. Намотка также может быть ламельной или пленочной.

Скользящие контакты снижают надежность датчиков и усложняют конструкцию. Недостатки проволочных потенциометров:

  • низкая надежность контактов;
  • нестабильность переходного сопротивления между движком и обмоткой из-за окисления и электроэрозии провода;
  • дребезг контактов.

Большой ресурс имеют токопроводящие пластмассы, имеющие также лучшую линейность характеристики. Датчики на их основе применяются там, где требуется высокая надежность, особенно – в авиации.

Контакт щетки изготавливается с добавкой благородных металлов, чтобы они были мягче материала обмотки.

Схемы

Датчики потенциометрического типа имеют статическую характеристику — зависимость напряжения на выходе Uвых от перемещения контакта X. Связь между этими параметрами у ненагруженного потенциометра обычно линейная:

Uвых = kX,

где L — длина датчика, k — чувствительность (k = Uпит/L).

В реальности потенциометрический датчик содержит нагрузочное сопротивление Rн в следующем звене системы автоматического управления, которое влияет на величину Uвых.

Низкая надежность датчиков, связанная с потерей контакта, обрывом обмотки или межвитковым замыканием, приводит к необходимости изменения схемы соединений.

Если знак сигнала на выходе не меняется, датчик называется однополярным. Он представляет собой простейшее устройство типа переменного резистора.

Схема потенциометрического датчика двухтактного типа применяется для автоматического регулирования, где на выходе изменяется знак сигнала в зависимости от того, какой он на входе. От этого зависит направление управляющего перемещения рабочего органа.

Напряжение может сниматься со щетки и с середины потенциометра. Применяются также другие схемы подключений. При питании постоянным током, когда подвижный контакт проходит через его среднюю точку, знак на выходе изменяется на противоположный. Если на обмотку подается напряжение переменного тока, изменяется фаза на 1800.

В автоматике используются нелинейные характеристики датчиков. Для этого изменяется диаметр проволоки вдоль намотки, шаг обмотки, применяются каркасы сложной формы, шунтируются участки потенциометров сопротивлениями.

Эксплуатационные характеристики

Характеристика холостого хода датчика представляет собой прямую линию (R/Rн = 0). Отклонение кривых от нее увеличивается с уменьшением сопротивления нагрузки Rн.

Кроме активного сопротивления у датчиков есть еще динамические нагрузки:

  1. Передаточная функция.
  2. Индуктивная составляющая.
  3. Собственные шумы при переходе подвижного контакта от витка к витку и от вибрации щетки.

Сопротивление между контактом движка и одним из выводов называется выходным. Измеряется его величина, сила тока или напряжение.

Погрешности датчиков

На реальные характеристики датчиков влияют следующие погрешности:

  1. Зона нечувствительности. При переходе контакта с одного витка провода на другой происходит скачок напряжения, величина которого определяется по формуле: DU=Uпит./W, где W – число витков.
  2. Неравномерность статической характеристики, связанная с колебаниями диаметра провода по длине, его удельным сопротивлением и точностью намотки.
  3. Наличие люфта между движком контакта и втулкой, влияющего на точность показаний.
  4. Неравномерность нажима щетки, влияющая на величину сопротивления контакта. Обычно силу прижатия движка к обмотке применяют достаточно большую. Однако сделать это не всегда удается, поскольку усилие от чувствительных элементов (мембран, поплавков, биметаллических пластин) — небольшое.
  5. Влияние электрического сопротивления нагрузки Rн. Ее величину выбирают в 10…100 раз больше сопротивления датчика.

Назначение

Потенциометрический датчик положения предназначен для следующих целей:

  • контроль и измерение перемещений механизмов, рабочих органов машин и других объектов;
  • звено обратной связи в робототехнике и в системах автоматики;
  • определение расстояний до объектов;
  • испытания в лабораториях, контроль работы механизмов.

Типы датчиков

Применение потенциометрического датчика зависит от типа:

  1. T/TS – высокоточный прибор (0,075%), работающий в диапазоне осевых перемещений 150 мм. Подходит для окружной скорости до 10 м/с. Конструкция – обеспечение перемещения стержня в двух направлениях по принципу делителя напряжения.
  2. TR/TRS – такой же, как предыдущий, но с возвратной пружиной. Перемещение достигает 100 мм. Выдерживает более высокие поперечные нагрузки на наконечнике.
  3. TE1 – модель, которая содержит электронную схему для нормализации сигналов с аналоговым выходом.
  4. TE1 с возвратной пружиной – модификация для решения более широкого круга задач. Датчик более устойчив при повышенных поперечных нагрузках.
  5. TEX – потенциометрический датчик с поворотной головкой и с отслеживанием линейных перемещений объектов на расстояние до 300 мм. Шарнирное соединение облегчает монтаж и обеспечивает длительный срок эксплуатации.
  6. TEX с приводной штангой с резьбой на конце. Дает возможность жестко фиксировать объект.
  7. TEX с возвратной пружиной не требует жесткого крепления объекта к штанге.
  8. TX2 с поворотной головкой или с крепежными хомутами. Применяются в тяжелых условиях эксплуатации. Уровень защиты составляет IP 67, точность — 0,05%.

Применение потенциометров в датчиках давления

Параметры работы различных устройств удобно преобразовывать в электрические сигналы. Потенциометрический датчик давления жидкости или газа применяют в системах подачи топлива в машинах, газа в магистралях и т. п. Обычно это мембранные измерительные приборы.

Под действием перепада давления на обеих сторонах мембраны происходит ее перемещение. При этом также поворачивается ползун. Если давления Р0 и Ри равны между собой, движок переходит в исходное левое положение, при котором устанавливается начальное сопротивление прибора. Когда Ри уменьшается, мембрана перемещается вправо, а ползунок устанавливает щетку потенциометра в положение, соответствующее перепаду давления.

Чтобы снизить погрешность дискретного изменения сопротивления потенциометра, количество витков на нем делают не менее 100. Ее можно полностью устранить, если перемещать щетку вдоль оси калиброванной проволоки реохорда.

Конструкции датчиков

Датчик линейного перемещения потенциометрический состоит из диэлектрического каркаса различной формы (пластины, цилиндра, кольца и др.), на который наматывается изолированный провод, присоединенный к зажимам и закрепленный хомутами на концах. По обмотке перемещается металлическая щетка. Для датчиков поворотного типа каркасы делаются кольцевой формы, продольного – прямолинейные. В местах контакта с движком изоляция на проводе отсутствует.

На зажимы подается напряжение питания. Выходной сигнал снимается между одним из концов провода и контактом щетки, хотя есть другие схемы подключений.

Каждый линейный потенциометрический датчик имеет статическую характеристику в виде зависимости величины выходного сигнала от перемещения контакта щетки.

Заключение

Потенциометрический датчик должен быть надежным, удобным и долговечным при его применении в измерительной технике и в системах автоматического регулирования. Устройства контроля положения объектов различаются по принципу действия и по видам сигналов выхода, которые должны соответствовать стандартам.

Источник: https://BusinessMan.ru/potentsiometricheskiy-datchik-opisanie-ustroystvo-i-shema.html

Потенциометры. Виды и устройство. Работа и особенности

Принцип работы потенциометрического датчика

Потенциометры — это регулируемые делители напряжения, которые предназначены для регулирования напряжения при неизменной величине тока, и выполненные по типу переменного резистора.

Устройство и работа

На выводы резистивного элемента подается напряжение, которое предполагается регулировать. Подвижный контакт является регулирующим элементом, который приводится в действие вращением ручки. От подвижного контакта снимается напряжение, которое может находиться в диапазоне от нуля до наибольшей величины, равной входному напряжению на потенциометр, и зависит от текущей позиции подвижного контакта.

Потенциометр действует по типу переменного резистора, однако выполняет функции делителя напряжения. Его резистивный компонент представляет собой два резистора, которые соединены последовательно. Положение скользящего контакта является определяющим в определении отношения величины сопротивления 1-го резистора ко 2-му.

Читайте также  Камера на дверь квартиры с датчиком движения

Наиболее популярным стал переменный однооборотный резистор. Он широко применяется в радиотехнике в качестве регулятора громкости, и в других устройствах. При изготовлении потенциометров применяются разные материалы для изготовления резистора: металлическая пленка, токопроводящий пластик, проволока, металлокерамика, углерод.

Виды и особенности

Потенциометры классифицируются по типу изменения сопротивления, типу корпуса устройства и другим различным признакам, и параметрам.

По характеру изменения сопротивления:

  • Линейные. Маркируются буквой «А». Сопротивление изменяется в прямой зависимости от угла поворота передвижного контакта.
  • Логарифмические. Маркируются буквой «В». В начале движения ползунка сопротивление изменяется быстро, а затем замедляется.
  • Экспоненциальные. Маркируются буквой «С». При повороте ручки сопротивление изменяется по экспоненциальной зависимости, то есть, вначале медленно, затем быстрее. Буквенные обозначения не всегда могут соответствовать действительности, так как это зависит от фирмы изготовителя прибора. Поэтому для определения типа потенциометра необходимо изучить техническое описание данного экземпляра.

По типу корпуса потенциометра:

  • Монтажные. Устанавливаются путем пайки на монтажную плату.
  • Стационарные оборотные. Располагаются на корпусе различных устройств. В свою очередь оборотные потенциометры разделяют на несколько видов:Однооборотные.

Скользящий элемент может поворачиваться на один оборот, а точнее, около 270 градусов. На полный оборот поворот невозможен, так как на остальной части сектора поворота размещены клеммы контактов. Наиболее популярными однооборотные переменные резисторы стали в устройствах, не требующих для регулировки более одного оборота.

Многооборотные.

Подвижный контакт имеет возможность выполнять несколько оборотов для увеличения точности регулирования параметра. Такие переменные резисторы обычно оснащены винтовым или спиральным резистивным элементом, применяются в устройствах, требующих повышенной точности разрешения и регулировки. Многооборотные модели чаще всего используют в виде подстроечных сопротивлений на монтажной плате.
Сдвоенные.

Включают в себя два переменных резистора, расположенных на одной оси. Это дает возможность выполнять регулировку параллельно двух сопротивлений. В таких моделях наиболее популярно использование сопротивлений с логарифмической и линейной зависимостью. Они применяются в стереорегуляторах усилителей звука, радиоприемниках и других приборов, требующих регулировки одновременно двух отдельных каналов.

  • Линейные (ползунковые). Такие модели потенциометров разделяют на виды:Потенциометр ползунковый.

Одинарный линейный потенциометр служит для устройств аудиоаппаратуры. Такие модели выполняют из токопроводящего пластика для повышения качества изделия, используются для регулировки одного канала.
Линейный двойной.

Такая модель способна регулировать сразу два отдельных канала. Часто применяется для настройки стереофонической аппаратуры в профессиональных аудиоустройствах, требующих управления двумя каналами.
Ползунковый многооборотный.

Его конструкция включает в себя шпиндель, который преобразует вращательное движение в прямолинейное поступательное перемещение ползунка по сопротивлению. Он применяется в местах, где необходимо повышенное разрешение и точность. Такая модель устанавливается для подстройки параметров на монтажной плате.

Также разделяют на:

  • Тонкопленочные.
  • Проволочные.

По назначению делятся:

Сопротивления проволочных образцов выполняются из константановой или манганиновой проволоки, которая намотана на стержень, изготовленный из керамики. Такие модели резисторов изготавливают на мощность более 5 ватт.

Тонкопленочные резисторы включают в себя сопротивление из пленки, которая нанесена на диэлектрическую пластину, похожую на подкову. По ней передвигается ползунок, который связан с выходным контактом. Эта пленка образована слоем углерода, лака или другого токопроводящего материала.

Подстроечные резисторы предназначены для однократной подстройки значения сопротивления. Например, они используются в обратной связи импульсных блоков питания. Такие модели имеют компактные размеры, и спроектированы для профилактических или предварительных настроек устройств. После этого их чаще всего не трогают, оставляют с одной настройкой. Поэтому такие образцы не имеют высокой надежности и прочности, в отличие от переменных резисторов.

Переменные резисторы способны функционировать длительное время и большое число циклов регулировки.

Такие образцы потенциометров имеют повышенную стойкость к износу, в отличие от подстроечных. Переменные резисторы используются в качестве потенциометров в таких устройствах, где требуется настройка громкости звучания акустической системы, либо точная настройка температуры какого-либо устройства.

Потенциометры марки СП-1 на металлическом корпусе имеют вывод для подключения к общему корпусу устройства для защиты от помех

Резисторы для подстройки марки СПЗ – 28 не имеют металлического корпуса, и его защитой будет корпус прибора, в котором установлен резистор. Внутренняя часть переменных резисторов аналогична, однако внешне они выглядят по-разному. Резисторы переменного типа оснащены надежной металлической или пластмассовой ручкой, которая соединена с ползунком.

Резистор, предназначенный для подстройки, не имеет такой ручки, и регулируется с помощью отвертки. Она вставляется в регулировочный паз механизма, который соединен с ползунком.

На электрических схемах потенциометры чаще всего изображают в виде постоянного резистора, имеющего регулирующий отвод со стрелкой. Она является символом подвижного контакта прибора.

При изображении в схеме реостата применяется изображение в виде прямоугольника, пересеченного наискось стрелкой. Это обозначает, что в работе задействовано два контакта: один – регулирующий, другой – один из двух крайних выводов.

Подстроечный резистор обозначают без стрелки, а контакт регулировки показывают тонкой линией.

Потенциометры с выключателем. Некоторые образцы потенциометров объединяют в одной конструкции две функции: потенциометра и выключателя. В регуляторе громкости такая конструкция очень удобна, особенно в переносном радиоприемнике. Повернув ручку, подключается питание, далее сразу происходит настройка громкости. Выключатель не соединен с цепью резистора, и имеет отдельную цепь. Однако он находится в одном корпусе с потенциометром.

Для примера можно показать такие марки переменных резисторов:

  • 24 S1 (китайский).
  • СПЗ-3М (отечественный).

Существуют также неразборные резисторы для подстройки марки СП4 – 1. Они заливаются эпоксидным компаундом, и служат для устройств военного применения. Резисторы марки СП3 – 16 предназначены для вертикальной установки на монтажную плату.

Металлокерамические потенциометры используются при производстве бытовых устройств. Их припаивают на плату для подстройки некоторых параметров. Мощность таких компактных резисторов достигает 0,5 Вт.

Резисторы с сопротивлением из лаковой пленки СП3-38 имеют открытый корпус. Они не защищены от пыли и влаги, имеют мощность менее 0,25 Вт.

Такие модели необходимо регулировать отверткой из диэлектрического материала, чтобы не допустить случайного замыкания. Подобные резисторы простой конструкции популярны в бытовой технике и электронике, особенно в источниках питания мониторов.

Герметичные потенциометры для подстройки оснащены защитным корпусом. Регулировка осуществляется диэлектрической отверткой. Они имеют повышенную надежность, так как на контактную дорожку не попадает влага и пыль.

Тороидные охлаждаемые переменные резисторы СП5 – 50М обладают достаточно мощным сопротивлением, имеют вентиляционные отверстия для охлаждения. Намотка проводника выполнена по форме тороида. Скользящий контакт перемещается по нему при вращении ручки с помощью отвертки.

В телевизионных приемниках еще встречаются высоковольтные виды подстроечных резисторов НР1-9А. Их величина сопротивления равна 68 мегом, мощность 4 Вт.

Они представляют собой набор резисторов из металлокерамики, собранные в одном корпусе. Стандартное рабочее напряжение для такого резистора равно 8,5 киловольт, наибольшее напряжение 15 киловольт.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/potentsiometry/

Датчик линейного перемещения: описание, виды, применение и как сделать своими руками

Принцип работы потенциометрического датчика

Контроллеры – устройства, позволяющие сделать жизнь людей проще. Есть контроллеры света, датчики звука, а есть регистраторы перемещения. Последние определяют величину изменения координат чего-либо. Разумеется, они применяются во всех сферах человеческой жизни. Далее будет рассмотрен датчик для контроля линейного перемещения объектов: его разновидности, характеристики, а также применение устройства.

Описание и назначение прибора

В общем виде подобные контроллеры состоят из элементарного электронного устройства (конденсатора, катушки, резистора, их комбинаций с дополнениями), механического объекта, изменяющего параметры этих устройств (феррита или пластины диэлектрика), а также АЦП для обработки сигнала аналогового формата и передачи его на управляющий элемент (микроконтроллер, например).

Виды и принцип действия

Контроллеры движения различаются по физическим явлениям, которые лежат в их основе, и, соответственно, по способу функционирования.

Емкостные

Работа таких регистраторов основана на варьировании емкости конденсатора.

Из школьного курса физики известно, что емкость проще изменить, уменьшая или увеличивая расстояние между его обкладками, либо внесением диэлектрика между его пластинами.

Исходя из этого получается, что емкостные контроллеры бывают двух видов (в зависимости от способа изменения емкости накопителя).

В первом случае чем ближе измеряемая цель, движение которого фиксирует датчик, тем меньше зазор между обкладками, тем больше его емкость. И наоборот.

При использовании емкостного контроллера второй конфигурации движение фиксируется при помощи пластины, связанной с измеряемой целью. Чем цель ближе, тем больше пластина проникает между пластинами.

Фиксировать величину емкости можно разными способами. Например, измерять комплексное сопротивление конденсатора.

Оптические

Эффектов из раздела оптики, на которых можно построить датчик движения, много. Самый популярный и чаще используемый – эффект оптической триангуляции. Контроллеры на его основе определяют расстояние от движущейся цели с помощью фиксации рассеянного о поверхность перемещающегося объекта излучения и определения угла отражения с помощью фотодетектора.

Читайте также  Как крепить датчик движения к стене?

Такие контроллеры производят измерение расстояния, никак не контактируя с выбранной целью. Они высокоточные и быстро реагируют на изменение измеряемых параметров.

Другой вид оптических контроллеров основан на учете вибрации и малых перемещений. Такие регистраторы состоят из трубы, двух решеток внутри – одна зафиксирована на месте, а вторая подвижная и может быть связана с движущимся объектом – и фотодетектора.

При появлении движения со стороны цели подвижная решетка изменяет свое положение, что влияет на интенсивность света, поступающего через обе решетки на фотодетектор.

Если такие датчики научить распознавать поляризацию света, то можно на их основе создавать селекционные контроллеры, которые будут реагировать только на объекты, хорошо отражающие свет.

Индуктивные

Принцип функционирования индуктивных контроллеров в одном из исполнений похож на принцип работы емкостных контроллеров, где емкость изменялась за счет внесения в конденсатор диэлектрика.

Правда, в индуктивные приборы вносится не диэлектрик, а сердечник в трансформатор. Сердечник связан с движущейся целью. Чем он больше проникает между обмотками, тем больше амплитуда, например, напряжения во вторичном проводе.

По размерности сигнала во вторичном проводе можно иметь представление о положении интересующей цели.

Такие регистры имеют и другую конфигурацию. Они могут состоять из ферромагнетика и измерителя индуктивности. Ферромагнетик связан с движущейся целью. По близости ферромагнетика к измерителю можно судить о положении объекта.

Индуктивные контроллеры во втором исполнении можно применять только для контроля небольших перемещений.

Вихретоковые

Такие контроллеры в своем составе имеют генератор магнитного поля и его регистратор. Регистратор определяет индукцию создаваемого поля. Движущаяся цель создает побочное магнитное поле с помощью вихревых токов. Оно пересекается с исходным полем, создаваемым генератором.

От пересечения магнитных линий изменяется индукция поля. Изменение индукции фиксирует регистратор. По нему можно судить о положении цели.

Ультразвуковые

Они представляют собой радары. Принцип их действия простой: источник контроллера излучает ультразвуковую волну, она сталкивается с движущейся целью, отражается от него, а приемник контроллера ее фиксирует. По различию параметров отраженной и принимаемой волны делают выводы о положении движущегося объекта.

Магниторезистивные

Такой контроллер в своем составе имеет постоянный и пластины, параметры которых зависят от величины магнитного поля вокруг, включенные по схеме, называемой “мостом”. Последние изменяют свое сопротивление в зависимости от индукции вокруг них.

Брусок из ферромагнетика, связанный с движущимся объектом, в зависимости от положения последнего, перемещается в поле, изменяет его индукцию, пластины меняют импеданс, и схема регистрирует фактически изменение этого сопротивления. По величине этого рассогласования судят о положении нужной цели.

Потенциометрические

Эти датчики – одни из самых простых контроллеров движения. Все, что они имеют в своем составе, это источник сигнала и потенциометр, регулятор которого связан с движущейся целью.

В зависимости от положения ручки меняется разность потенциалов на переменном резисторе.

По величине этого напряжения можно судить о положении цели.

Магнитострикционные

Эффект магнитострикции состоит в изменение объема и габаритов какого-либо тела при изменении его намагниченности. Регистры на основе этого эффекта состоят из волновода (трубки), по которому перемещается магнит в форме кольца. Внутри трубки находится провод с подключенными к нему генератором и регистром импульсов. Поле, создаваемое проводником, складывается с полем, создаваемым магнитом.

Суммированное поле вращает трубку, что позволяет волноводу создавать импульсы вращения, попадающие на регистратор. По задержке между отправлением электроимпульса и приходом импульса от волновода можно определить расстояние до кольца, а положение магнита дает представление о положении перемещающейся цели.

На основе эффекта Холла

Контроллеры, принцип функционирования которых объясняется действием этого эффекта, похожи на магниторезистивные.

Эффект Холла состоит в изменении напряжения проводника при прохождении через него электрического тока.

Области применения

Любой регистратор движения представляет собой индикатор с аналогово-цифровым преобразователем. Аналоговый сигнал – изменение напряжения, емкости конденсатора, амплитуды во вторичной обмотке и других параметров. Цифровой сигнал – то, что управляет подключенной к датчику системой.

Каким-то системам достаточно лишь двух сигналов с датчика – нуля и единицы. К ним относятся системы сигнализации (извещатели), в которых ноль – дверь закрыта, единица – дверь открыта; системы управления светом (ноль – никого нет в помещении, свет выключен, единица – в помещении есть движение, свет включен).

Хотя есть системы, в которых важна точность измерений подобных датчиков. Например, станки с числовым программным управлением, которые на основе данных с датчика движения могут регулировать положение в пространстве работающего механизма (иглы или сверла).

Обзор производителей

На рынке представлено большое количество производителей датчиков линейного движения, среди которых:

  • ЭЛТЕХ;
  • Longfellow-2;
  • DuraStar;
  • DEPP;
  • HENGXIA;
  • Roundss.

Эти компании выпускают продукцию различного качества, разного функционала и разной ценовой категории.

Важно! Стоимость всех далее приведенных устройств, которые производятся не в России, зависит от курса рубля.

ЭЛТЕХ

ЭЛТЕХ – компания из Санкт-Петербурга, которая является крупнейшим производителем подобных контроллеров в стране. Они выпускают датчики емкостного, индуктивного и магниторезистивного типа.

Longfellow-2 и DuraStar

Longfellow-2 и DuraStar – датчики линейного движения, относящиеся к типу потенциометрических. Они способны улавливать изменения движения в пределах до 6,1 см с точностью 0,5%.

Чем дороже стоят модели, тем больший диапазон измерений они поддерживают.

DEPP EP15-series

Модель датчика китайской компании DEPP, относящегося к типу устройств, в основе которых лежит изменение магнитной индукции поля. Они применяются в станках и системах автоконтроля.

HENGXIA K100-series

Модель оптического датчика, которая может фиксировать размеры в диапазоне 0,5 – 72 см.

Roundss Rlc50d

По сути, этот датчик – электронная рулетка, которая с высокой точностью определяет необходимые расстояния.

Как изготовить своими руками

Проще всего создать потенциометрический датчик и подключить к нему какой-либо микропроцессор.

Для создания потенциометрического датчика нужно взять блок питания и потенциометр, регулировочную ручку которого следует подключить к перемещаемому объекту. К потенциометру нужно подключить один из выводов микроконтроллера в режиме АЦП (обязательно через ограничительный резистор, чтобы вход не сгорел), а к другому выводу следует подключить систему, управление которой осуществляется (аналогично через резистор).

Не так сложно изготовить индуктивный датчик. Для этого понадобится тот же микроконтроллер с входом в режиме АЦП, две обмотки для будущего трансформатора и регулируемый сердечник. Подвижную часть сердечника нужно подключить к движущемуся объекту, АЦП – ко вторичной обмотке, первичную обмотку соединить с источником питания, к другому выводу микроконтроллера следует подключить управляемую систему. Нельзя забывать об ограничительных резисторах.

По аналогии можно собрать емкостной датчик с введением диэлектрика. Вместо обмоток трансформатора подключаются обкладки конденсатора, вместо ферромагнетика сердечника – любой диэлектрик.

Можно собрать и лазерный датчик линейного перемещения. Как раз такой применяется в станках с ЧПУ. Проблем с приобретением самого излучателя нет. Они могут возникнуть на этапе обработки сигнала с лазерного излучателя. Делать это проще всего с помощью микроконтроллера (например, SMT или AVR), но для отладки обработки этого сигнала потребуется потратить много времени, если нет большого опыта в проектировании таких устройств.

Технические устройства с более сложной конструкцией, конечно, тоже можно самостоятельно собрать. Тем более, что их схемы доступны в интернете, вопрос только в подборе номиналов элементов. Хотя лучше приобрести готовые изделия, потому что они заранее проверены и настроены инженерами компании-изготовителя.



Правила эксплуатации

Первое, что нужно уяснить при эксплуатации подобных датчиков –, они не любят резких воздействий со стороны, к которым относятся удары, вибрация, падения и т.д. Дорогие датчики линейного перемещения – высокочувствительные устройства и в них устанавливаются элементы, не переносящие деформации. Удар или деформация может повредить контакт регистратора, и тогда датчик будет показывать неточный результат (или не будет его выводить вообще).

Например, подвижная сетка оптического датчика крайне чувствительна к внешним воздействиям, как и регистраторы в магнитострикционных и магниторезистивных типах моделей.

Также не следует пытаться дорабатывать датчики самостоятельно, если нет никакого опыта в подобных модернизациях. Если контроллер рассчитан на определенную точность, не нужно пытаться ее повысить. Для этого придется пересчитывать номиналы всех элементов в устройстве и, если допустить ошибку, можно его сломать.

Датчики линейного перемещения требуют к себе бережного отношения, если речь идет о бытовых контроллерах, а не об устройствах, которые должны нормально работать в экстренных условиях, вроде датчиков, применяемых в горнодобывающей промышленности.

Контроллеры, предназначенные для работы в особых условиях, не продаются в бытовых магазинах или на популярных китайских сайтах. Изготавливаются они во многих случаях на заказ на специальных предприятиях, а их стоимость в разы выше, чем у массовых аналогов.

Источник: https://ProDatchik.ru/vidy/datchik-linejnogo-peremeshhenija/